Indian Statistical Institute, Bangalore

B. Math. First Year, Second Semester Probability Theory-II Final Examination

Duration: 3 hours Maximum marks: 100 Date: 09-05-2012

- 1. Let D, E be outcomes of two independent throws of a die. Suppose $M = \min\{D, E\}$ and $N = \max\{D, E\}$. Find joint distribution and marginals of M, N. Compute expectation and variances of M, N. [10]
- 2. Suppose Y_1, Y_2 are independent identically distributed random variables with density g given by $g(y) = \frac{1}{2\lambda}e^{-\frac{|y|}{\lambda}}$ for all real y, with some fixed $\lambda > 0$. Find the distribution function and a density function for $Y_1 + Y_2$. [15]
- 3. Let V,W be independent, identically distributed random variables with density given by

 $h(t) = \begin{cases} e^{-t} & \text{for } t > 0; \\ 0 & \text{otherwise.} \end{cases}$

Obtain densities for V+W and $\frac{V}{W}$ and prove or disprove the statement: V+W and $\frac{V}{W}$ are independent. [20]

4. Let S_1, S_2 be i.i.d. random variables with common density:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} - \infty < x < \infty.$$

Take $T_1=2S_1+5S_2$ and $T_2=-5S_1+2S_2$. Find the joint density of T_1,T_2 . Find the marginal density of T_1 . [20]

- 5. Suppose $\{X_n\}_{n\geq 1}$ is a sequence of random variables converging in distribution to a random variable X. Show that (i) X_n^2 converges to X^2 in distribution as n tends to infinity. (ii) Show that $-X_n$ converges to -X in distribution as n tends to infinity. [20]
- 6. State and prove Weak Law of Large Numbers (WLLN) for i.i.d. sequences of random variables with finite variance. [20]